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ABSTRACT 

We show that the electroproduction of massive muon pairs provides 

a test of the algebra of bilocal operators. The cross section for the 

contribution of the Compton term is derived and estimates of the back- 

ground terms are indicated. As expected, numerical estimates indicate 

that the cross sections are fairly small. 
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INTRODUCTION 

During the last few years one of the most fruitful ideas in elementary 

particle physics has undoubtly been the algebraic scheme of equal time 

commutators for current densities. A natural extension of this idea 

has recently been proposed, 
1 m which the commutators of current 

densities are postulated not only for equal times, but also for all light- 

like distances. The simplest of these schemes is abstracted from the 

free quark model. The densities are now bilocal operators made out 

of the quark fields and are given by: 

J’(x.y) = : jl(x)I+(y) : (1.1) 

where Y’ is a combination of y matrices and X 
1 is a 3 x 3 unitary 

matrix. The new algebra postulates that when all possible separations 

are light-like: 

(x-y)2 = (u-vj2 = (x-u)2 = (y-u)2 = (x-Lq2 = (y-vj2 = 0 (1.2) 

the commutation relations of the bilocal operators are those suggested 

by the free quark model: 
7 

J&y), J2(u,.); ; f~~A(x-v) :T (~)I~y~Ti~~hi+(y): 
! 

-aPA(y-u) :~(x)+~?X~$(V): . (1.3) 

The quark fields occuring in (1. 1) and (1.3) are used symbolically in order 

to exhibit the SU(3) and Lorenz structure of the bilocal operators. 

The limited vilidity of the commutator is emphasized by the symbol 
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2, denoting equality on the light cone. 

Relations of this type have already been used successfully in order 

to explain the recent SLAC data on the deep inelastic electron-proton 

scattering. 
1 

In this case Ji(x, y) and J2(u, v) are the ordinary local 

electromagnetic currents with x =y and u =v. The implications of this 

scheme were also found to be in agreement with all the results of the 

quark-parton model, 
2 

which do not depend on the explicit assumptions 

about the momentum distribution of the partons. However, all these 

tests involve single commutators in which the initial densities are 
i 

local operators. Recently, several difficult experiments have been 

proposed3 in order to test the algebra of bilocal operators. In 

this paper we present an investigation for one of them. namely 

the electroproduction of massive muon pairs: 

+’ 

e+p+e+(p +p-)+X (1.4) 

This test is of interest because it could measure, as we shall show, 

the connected part of the light-cone commutator of two retarded light- 

cone commutators. 

To lowest order of electromagnetic interactions, the electropro- 

duction of muon pairs involves three types of Feynman diagrams, which 

are shown in Fig. 1. We shall show that, in the appropriate kinematic 

regions, practically all the terms arising from them can be evaluated 
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if one uses the algebra of Eq. (1. 3). However, of main interest to this 

article is the square of diagram (la), which provides a test for the 

algebra of bilocal operators. The other terms, although in principle 

known, should be regarded as background. 

In Section II we exhibit clearly the assumptions under which the 

square of the Compton diagram (la) can be evaluated using Eq. (1. 3). 

Section III analyzes the contribution of the interference terms, using 

the new algebra, and indicates a set of experiments which isolate the 

incoherent sum of the three diagrams. Numerical results for the cross 

section arising from the Compton term are presented in Section IV, 

where we also summarize the main conclusions. One of the main dif- 

ficulties in such experiments, however, arises from the large contri- 

bution of the background terms discussed in the appendix. Detailed 

numerical estimates of their contribution has not been performed, 

because of the great complexity of the formulae, but we indicate 

some analytic methods that could be used in estimating the backgrounds 

in a given experimental situation. 

II. THE COMPTON PART OF THE AMPLITUDE 

In this section we evaluate the contribution of the square of 

diagram (la) to the cross section of process (1.4). The notation is 

shown in the figure. This diagram gives a term to the amplitude 

which can be written as: 
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4 
F1 = eT wvr 

k2q2 P” 

where 7 ,I v 
is the leptonic part given by: 

(2.4) 

r 

7 

1 

’ I- 

PV 
= Ece )(k2 )Yp,Ufe )(kl ) / U 

il (p) 

(ql)YvV(Jq2) 

1 

(2.2) 

and TPV is the off-mass shell “Compton” amplitude from an initial 

proton state of momentum p to an arbitrary, but fixed, final state 

1 n> with momentum p ‘. 

T p*” = 
I 

die 4 -iqx<nI TS J”(x), 
I 

J”(0) 
i 

1 p> (2.3) 

The matrix element in (2. 3) represents the connected part of the 

covariant time-ordered product of two electromagnetic currents. The 

main objective is to find a kinematic region in which the light cone, 

2 
x -0, dominates the integral of Eq. (2. 3). We are thus led to examine 

the limit when both q. and q2 becomes large but with fixed ratio. This 

limit is achieved when, in the laboratory frame, ko+m, qO=ko+P, 

q =q -(Y while cy, p and p’ are being held finite. In this limit the 

e:poIential becomes eiqo(xO-x3)eia 3 and a naive application of the 

stationary phase argument4 suggests that the dominant contribution 
I 

comes from x2-to. Therefore, we are tempted to apply the light cone 

expansion ideas to the T” product of Eq. (2. 3). However, this is not 

straightforward. In general, Eq. (2. 3) might contain “sea-gull” 

terms together with non covariant operator Schwinger terms. This is, 

for example, the case when there is a fundamental charged scalar field 
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in the theory. In this case, a light cone expansion similar to Eq. (1. 3) 

might still be true for a given physical matrix element, but we do not 

know of any obvious way to see it. Therefore, rather than investigating 

the most general case, we limit ourselves to remark that the presence 

of fundamental charged scalar fields would have resulted in a longitudi- 

nal cross-section cL for the SLAC data, which does not vanish in the 

Bjorken limit. If we assume that this is not the case we can conjecturei 

that the behaviour of the currents near the light-cone is basically given 

by expressions containing quark fields like in Eq. (1. 1). In this case 

the above mentioned complications are hopefully absent. Therefore, 

we feel confident to assume that, near the light cone x2 -0, the T* 

product of Eq. (2. 3 ) can be replaced by an ordinary commutator of 

two quark-current densities multiplied by a step function. Thus, using 

Eq. (1. 3), we can write: 

T F” g d4 x e-iqxe(xO)apA(x) 
I 

where 

<nl S 
i 

Ilv ‘“A,(O, x) - e pv pAsA5(0, x) 
i 

1 p> 

s P-1”PX = g,II~Pgvx + gflxg’P _ g pL”g~Px 

A’(x, 0) = J’(x, 0) - J’(O,x) 

(2.5) 

(2.6) 

S;(x, 0) = J;(x, 0) + J;(O,x) (2.7) 

The SU(3) content of the currents J’(x, 0) and Jk(x, 0) is shown 

if we write them, symbolically, in terms of quark fields: 
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J’(x, 0) = + :$x)yxQ2+(0): , J$, 0) = + :$&,Q2$(o): (2.8) 

Q is the charge matrix: Q = ( ‘;f,Xeiji ) 

In order to calculate the cross-section we square this term: 

The leptonic part of (2.9), summed over lepton spins and integrated 

over the relative momentum of the two final muons, gives: 

c * &vf,p = tq2gt.ta kvkp - ‘& - k2gvp 1 (2.10) 

where 7= kj+k2 and the gauge invariance of the hadronic part has been 

used. Notice that, as it is written, (2. 10) satisfies the gauge conditions: 

=kp 
c 

.,- f” 
II” 4 

=o (2.11) 

Let us now look at the hadronic part. We square Eq. (2.4) and 

sum over the spin of the proton and the intermediate states 1 n>. Taking 

into accound (2.10) we obtain: 

(~IT)~ a4(k+p-q-p ‘) 5 

/ 

d$ d4y& Jq(y+z-xJe-ikz 
e(xn)e(y”)apA(x)aTA(y) 

xp 1 (si*p7yAY(y+s, z) + i E P7YQy 5(y+z, z)], 
[ P , 

S ‘vpxA (0 x) -ie ELvpxS 
A a x ,(0,x) iI \P’ (2.12) 
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In writing Eq. (2.12) the usual argument about the energy of the 

intermediate states has been used in order to convert the product 

2 2 
of the bilocal operators into a commutator. Note that x -y - 0. 

We want to use again a stationary phase argument in order to conjecture 

that the integral in (2. 12) is dominated by the light cone with respect 

to all pairs of points. In the first limit we had taken (k#@m keeping 

kqOfinite. Now we take %qOlarge in the same way, namely kO-q0 = 

p-+m keeping o=qo-q3 finite. The order of the two limiting procedures 

is very important. It is more convenient to express these limits in 

terms of scalar quantities. Let us define: 

S = (k+p)2, t = (k-q)‘, 2Mv = 2p. (k-q) (2.13) 

The first limit consisted in taking k2, q2 and S large with fixed ratios, 

keeping t and 2Mv finite. In the second step we take also the limit 

-t, 2Mv +m keeping the ratio 5 = -t/ 2Mv finite. This order of limits 

corresponds to a well-defined “gedanken” experiment but we hope that 

it can also describe the situation where k2, q 
2 

, S B-t, 2Mv>> M2. 

In this limit it follows that (so- z3 )2 - 0 and causality implies5 that 

all six differences are also light-like. Therefore, we can use the 

commutators of Eq. (1. 3) and taking into accound the symmetry of the 

leptonic part in p-tv we obtain: 

: P p ,@T” (2rr)464(k+p-q-p’) = ~ 

P7 + R(2) 
P YS PVP), _ E 

P wok 
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_ sYxok 
Spr 

by s CLVPX + E PTy E VVPx R(3) 
P ii p-rok + Rb4r)ok I 

+2s PT, E P~VP~ eyXuk 
FL I 

R(1) 
pTuk 

- Rok + RbSr)ok - R;;ol;) 

where the R’s are given by: 

(2.14) 

R(1) = II. 
NpL7RoPk AQ4(5) 

prok 2 
N2L2 

2Mv 
(2.15) 

,(2) 
pTuk 

= R(rl;ok 

L L7RoPk 
R(3) =II P 

AQ4(E) 

p-ruk 2 
L4 

2Mv 

A ,(5) 
N N7RuPk 

R(4) =: P 
Q 

pruk 2 
N4 

2Mv 

(2.16) 

(2.17) 

(2. 18) 

N = q-tp, L = k+Ep, R = k-q+Ep 

<p j Ak(u> v) 1 p’ = 2pk xQ4 (p. (u-v))= 2~4:~” ” (“-v)AQ4(n) d rl 

-m 

(2.19) 

(2.20) 

and A (u, v) in Eq. (2. 20) is defined in exactly the same way as in 
k * 

Hq. (2. 6, 2. 7) but the currents Jp(u, v) contain now the matrix Q*, instead of Q2. 

Therefore, the SU(3) decomposition of A ,(c) is: 
Q 

4 
AQ4(C) = z;; A 

(0) 5 
(c) + 21 A 

(3) 
(5) +5 A@ )(5) (2.21) 

27& 

The functions A(“), A(3) and A(8) are in turn given by the electro- and 

neutrino production data1 by: 
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A 
(0) 3 

(5) = 25 ep + F en “p + F vn 
2 2 

(2.22) 

-. 3(FZep + 

(2. 23) 

(2.24) 

In particular, the difference of the Compton contribution to experiments 

with proton and neutron targets is completely determined by the electro- 

production data: 

Ap -An =$ 
Q4 Q4 

(2. 25) 

Finally, the ratio A 4/A 
Q Q2 

can be bounded 

119 5 A 4/A 
Q Q2 

5 419 (for a proton target) (2. 26) 

by using the structure function inequalities 
6 that have been obtained for 

electroproduction. 

Putting together equations (2.11) and (2. 14), we obtain, after some 

algebra, the final form of the hadronic tensor: TA ,(5) ; 

~~~VT*IIP(2rr)4*4(p+k-q~-p’) = 2;, s/ 

2(N. R) (N. P) 2(L, R) (L, P) :L, N, 

N4 - 

‘i + 2 2 (P.N) (L.R) - (P.L) (N,R) +N) ,T ( L4 -2M” ‘“;1 

-N~NP 4. (P, N) + 4 (P’ L) 

N4 L2N2 I 
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(2.27) 

The cross section can now be obtained trivially by multiplying (2. 27) 

by the electron tensor. The explicit formula for the cross section is 

da 

dq2dqodk2d nk 
2 

112 
AQ4(5) 

2M2 v 

+ ,(L.R)(L*p) 

L4 
+4M,,L. 

L2N2 

- (L’p)(L’R) 
(2.28) 
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III. INTERFERENCE TERMS 

The same analysis can be extended to include the interference between 

diagram (la) and the rest of the diagrams. The hadronic tensor is given 

by 

TpvTP* + c. c., where 

+&j4(k+p-q-p’ ) = 

< pi /+y+z). J”(z), Jp(0) jp>. 1 1 (3.1) 

Repeating the arguments of the previous section we obtain that the 

relevant distances are again on the light cone. The main difference 

is that, in the scaling limit., the interference terms are proportional 

to 

A A 
(0, z) + S5(o,s)> J?Y) 1 II”. (3.2) 

The terms that survive now are of the form <p ( Sk(x, y) 1 p> and not 

<p(Ak(x>y)lp>. Therefore, we need the symmetric function S (o’(E) 

and S(” (5). In fact Sk(x, y) contains the matrix (a3, due to the three 

electromagnetic currents, which has the SU(3 ) decomposition: 

s ,(5) = 2 S(O)(5) + f d3)(5) + -A- d8)(5) 
Q 36 

From neutrino data we know S3(c) because it is proportional to 

F2 
“P _ F “n 

2 
, and the combination $(O)(E) + 4 S(‘)(c) because it is 

proportional to F3”P + F3Vn. But we do not *,iow S(‘)(e) and S(8)(5) 

(3.3) 
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separately. Therefore this term, although interesting from a theoretical 

point of view, cannot be evaluated using electro- and neutrino-production 

data. 

Fortunately there are experiments where the interference terms drop 

out. By integrating over the relative phase space of the muon pair, the 

interference between diagrams (ic), (ic’) and the diagrams (la), (Ib), 

(Ib’) can be eliminated. In addition, by doing experiments with electrons 

and positrons and summing up the cross sections we can eliminate the 

interference between (la) and (ib), (ib’). Thus we can obtain the 

incoherent sum of the three different types of diagrams. Alternatively, 

the difference of the cross sections for incident electrons and positrons 

measures directly the symmetric function S 
Q3 

(6). The same term can 

also be separated in electroproduction experiments by selecting that part 

of the cross section, which is antisymmetric in the muons. 

IV. NUMERICAL RESULTS AND CONCLUSIONS 

We consider the experimental situation of an incident electron beam 

with momentum kl on a proton target leading to a final electron with 

momentum k 2, a dimuon pair and an unobserved hadronic state. 

The momentum transfer between the electrons is indicated by k2. 
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In the dimuon system we integrate over their relative phase-space, 

thus characterizing the system by a single four vector qP. In addition 

to the five variables characterizing the hadronic part of the process, 

we have two additional variables characterizing the leptons. One is the 

ratio of the electron energies k2/kl. The other variable is the angular 

correlation 4, between the normal to the electron plane and the vector 

G. An averaging over the angles 4 has been performed in the numerical 

values of the cross section given in Table 1. In these numerical estimates 

we also set A ,(D = A ,(5). As it is seen from the table, the dependence 
Q Q 

of the cross section of the variables k2, q2 is fairly rapid, so that smaller 

values for these variables lead to considerably larger cross sections, 

A final consideration is the contribution of the other diagrams. We 

have calculated in the appendix the hadronic tensor for the bremsstrahlung 

diagram and we also obtained a lower bound for the contribution of the 

Bethe-Heitler terms. The contributions from the Bethe-Heitler terms 

can be, in our specific limits, fairly large because of the 1/t dependence 

occuring in Equation (A-14). 

In summarizing the results, we note that the electroproduction of 

massive muon pairs provides a theoretical laboratory in the neighborhood 

of the light-cone; since it involves not only the commutator of two local 

operators, but also the commutators of bilocals with bilocals, as well 

as the commutator of locals with bilocals. The picture that emerges 

from our analysis indicates that the cross sections calculated in specific 
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kinematic regions, where light-cone techniques can be applied, are 

completely predictable in terms of the electro- and neutrino-production 

data. The cross sections are small and the backgrounds formidable, 

but perhaps not unmanageable. 
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APPENDIX 

Background Terms 

What we call here “background terms” are represented by the four 

diagrams of Fig. (ib), (lb’), (Ic) and (1~‘). They represent: (i) The 

“bremsctrahlung” part of Fig. (Ib) and (lb’) whose contribution to 

the amplitude is 

where the notation is defined on Fig. 1 and 

(A-2) 

0 P ~(E1)(qih,,~p)(q2) 1 
(A-3) 

(ii) The Bethe-Heitler terms of Fig. (ic) and (1~ ‘) given by: 

F3 = e3 --f xp kS( k-y)” (A-4) 

with 1 
X, 

I* +yplt_kZy 

=~(e)(k2)yvUce)(kl) M” . 
P 

(A-5) 

Taking the square of F2 + F3 we obtain: 

\F,+F& -A-Jy cb (kmQ) (~++)(q+ $g) (A-6) 
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The hadronic part, summed over the spin of the proton and the 

intermediate states 1 n> is easy to evaluate. Indeed we have: 

(A-7) 

In the limit t - -a, 2Mv - m with fixed 6 the integral in (34) is 

dominated by the light cone and the matrix element gives just the 

ordinary electroproduction structure function: 

/j&g) = $ p(a‘,++ A’“ca,+& 4%) (A-9) 

As we see, the contribution of F2 and F3, although completely deter - 

mined in the kinematical region we are interested, does not contain 

the light-cone commutator of bilocal operators. Therefore, we consider 

them as background to the term F1 which alone gives a test of the full 

algebra of Eq. (1.3). 

Let us now turn to the leptonic part. Because the muon pairs in 

F2 and F3 have opposite values of C, the interference between these 

two terms vanishes when integrating over the relative momentum of 

the muons. Therefore, we need only to calculate 1 o o 
q4 p y 
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After a rather lengthy calculation we find: 

where the summation is over the proton and lepton spins and the inter- 

mediate states n and the integration is over the relative momentum 

of the two muons. W 
P” 

is defined by: 

“Jp = tk,-; yk*+ q2 I -+%,P Ck2 t 2 hp%*(k.g) 

- 2 ~+kz,(W) + a k,p&&) ) 

+ pJ.4)~ r L JbO I$*S)(kq-S) +$ kk2 1 

tz (h1.+S9 L I &$? b)(kiS) + $ tq 

where s = k-q. 

(A-11) 

For the contribution of the Bethe-Heitler term we obtain a l%wer 

bound. The lepton tensor corresponding to the, electron vertex can be 

written as: 

-53 
azd&+p c 

( 
tR c-; f q c: 

> 

(A-12) 



-19- NAL-THY-48 

where (Y and p are positive scalars and E 
S 
P’ 

CR EL 
P’ v 

are the scalar, 

right-handed and left-handed polarization vectors, respectively. The 

lower bound is obtained by replacing 7 
FV 

by 

T;* = U ‘iyv +qc: - c; E: > 

=-e (I,,- *) 
(A-13) 

s s 
The difference of the two tensors is the term (m+p) E E 

P !J’ 
whose 

contribution to the cross section is positive. The cross section can 

now be bounded r 
JT 2 ci4 1 

d’br&, - L\F k,p \-%(jWJ + LJ, e,(l- .g9) 

where 

t \"I,!, 
t 
h-p _ (k~SW~~ 

Q-y t > 
\ 
I 

. 
(A-14) 

TL=$pb _ gk!!L&j ; p, = &lb\ t3 ;9$v] (*-y 
t 

L,, = \ i,.j4,++-%,-%~ 2 + (A-16) 
, a 

wi’ Wz are the usual structure functions and M 
PV 

is defined in Eq. (A-5). 

The traces occuring (A-16 ) are now fairly simple and the integrations can 

be performed analytically. 
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TABLE CAPTION 

The Cross Section As A Function Of The Kinematic Variables * 

The specific values of the variables were chosen to satisfy the limits 

described in the text. There is no reason to attach any other significance 

to these particular values, since they were chosen randomley. 

FIGURE CAPTION 

Feynmann Diagrams Contributing To The 

Electroproduction Of Massive Muon Pairs. 
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" t 

in GeV in (GeVj2 
da 

dq~2dqodk2dQ2 
with 

2 
ki = 80. 00 GeV 

in 
cm 

(GeV)4(Str) k2/kl 
= 318 

10.00 -5.54 .26x10 
-39 

8. 00 -4.33 .28x10 -39 q2 = -k2 = 12.00 (GeVJ2 

6. 00 --3.19 29x10 
-39 

4. 00 -2.12 .30x10 
-39 

6. 00 -1.50 .49x10 -38 kl = 80. 00 GeV 

4. 00 -1.00 
-38 

.44x10 

k21k, = 318 

q2 = -k2 = 6.00 (GeVj2 



, 

(a) 

(b) ( b’) 

P 

(cl 


